

Dr : Mohamed Ahmed Ebrafim

Benha University
 Faculty of Engineering at Shoubra
 Electrical Engineering Dept.

Postgraduate (Pre-master) Course

\square Chapter 1:
Transmission Line Constants

- Chapter 2:

Transmission Line Models and Calculations

- Chapter 3:

Mechanical Design of Overhead T.L

- Chapter 4:
D.C. power Transmission Technology

Chapter 1:

Transmission Line Constants

1. Main parts of over head T .L.

Ground

Types of conductors

$\square \quad$ Hard -drawn copper conductors .
$\square \quad$ Aluminum- core steel-rein forced (ACSR).
$\square \quad$ For rural electrification, all - aluminum conductors are used.
$\square \quad$ Steel wires are used as earthing wires for over head T. L.

The main constants required are

$\square \quad$ Resistance (R "ohm").
$\square \quad$ Inductance (L "hennery") \& corresponding X_{L}.
$\square \quad$ Capacitance (C " farad") \& corresponding X_{c}.

Resistance of over head T .L

$\square R=\rho L / A$
\square Where :
R: resistance of T.L (Ω)
ρ : resistivity of T.L conductor (Ω.m)
L : length of T.L (m)
A : cross -section area (m^{2})
\square For hard -drawn conductors $: \rho=1.724 * 10^{-8} \Omega . m$ at $20^{\circ} \mathrm{C}$
\square For all - aluminum conductors : $\rho=2.860 * 10^{-8} \Omega$.m at $20^{\circ} \mathrm{C}$

Effect of Temperature on Resistance

\square The resistance of T.L increases with Temperature
\square The rise in resistance depends on the Temperature coefficient of conductor material (α).

$$
\frac{R_{t 2}}{R_{t 1}}=\frac{1 / \alpha_{0}+t_{2}}{1 / \alpha_{0}+t_{1}}
$$

Where :

$R_{\mathrm{t} 2}$: Resistance of T .L at t_{2}
$\mathrm{R}_{\mathrm{t} 1}$: Resistance of T.L at t_{1}
α_{0} : Temperature coefficient at $0^{\circ} \mathrm{C} \quad\left(1 /{ }^{\circ} \mathrm{C}\right)$
$\mathrm{T}_{1} \quad$: First temperature
T_{2} : Second temperature
\square For hard - drawn copper
For aluminum

$$
\begin{aligned}
& \alpha_{0}=0.0041 \% / \mathrm{C} \\
& \alpha_{0}=0.0038 \%
\end{aligned}
$$

Skin Effect on Conductors

when alternating current is passing through conductors, there is an unequal distribution of current in any cross - section of the conductor, the current density at the surface being higher than the current density at the center of the conductor . this causes larger power loss for a given r.m.s alternating current than the loss when the same value of $D C$ is flowing in the conductor.
$\square R_{\mathrm{ac}}>R_{\mathrm{dc}}$

$$
\mathrm{R}_{\mathrm{ac}}=\frac{\text { Average power losses }}{\mathrm{I}_{\mathrm{rms}}^{2}}
$$

Skin effect ratio $=\frac{\mathrm{R}_{\mathrm{ac}}}{\mathrm{R}_{d c}}$

Which depends on

- Permeability (Type of material).
- Area of cross section of the conductor.
- Frequency of the supply.

Inductance \& Reactance of O.H.T.L

Inductance of overhead transmission line depends on:
\square Size of conductor.
\square Distance between conductors.
\square Material of conductors.

Inductance \& Reactance of O.H.T.L

$$
\mathrm{H}=\frac{I}{2 \pi x}
$$

H: electric field intensity.

$$
\begin{array}{ll}
\mathrm{B}=\frac{2 * 10^{-7}}{x} I & \mathrm{wb} / \mathrm{m}^{2} \\
\mathrm{H}=\frac{I x}{2 \pi r^{2}} & \text { A.turn } / \mathrm{m}
\end{array}
$$

A.turn/m

$\mathrm{X}>\mathrm{r}$
$B=\frac{2 * 10^{-7}}{r^{2}} I x$
$\mathrm{wb} / \mathrm{m}^{2}$

Inductance of Two Conductor (Single Phase)

$$
\begin{aligned}
\lambda_{\text {total }} & =\lambda_{\text {inside }}+\lambda_{\text {outside }} \\
\lambda_{\text {inside }} & =\int_{0}^{r} \frac{2 * 10^{-7} x I}{r^{2}} * \frac{\pi x^{2}}{\pi r^{2}} d x \\
\lambda_{\text {inside }} & =\int_{0}^{r} \frac{2 * 10^{-7} x^{3}}{r^{4}} d x=\left.\frac{2 * 10^{-7} I}{r^{4}} \frac{1}{4} x^{4}\right|_{0} ^{r} \\
& =\frac{2 * 10^{-7} I}{4 r^{4}} * r^{4}=\frac{1}{2} * 10^{-7} I \quad \text { linkages } / \mathrm{m}
\end{aligned}
$$

Continue

$$
\begin{aligned}
\lambda_{\text {outside }} & =\int_{r}^{D} \frac{2 * 10^{-7} x I}{r^{2}} * \frac{\pi r^{2}}{\pi x^{2}} d x \\
& =\int_{r}^{D} \frac{2 * 10^{-7 I}}{X} d x=2 * 10^{-7} I \ln \frac{D}{r} \\
\lambda_{\text {outside }} & =2 * 10^{-7} I \ln \frac{D}{r} \quad \text { linkages } / \mathrm{m} \\
\lambda_{\text {total }} & =\lambda_{\text {inside }}+\lambda_{\text {outside }} \\
& =\frac{1}{2} * 10^{-7} I+2 * 10^{-7} I \ln \frac{D}{r}
\end{aligned}
$$

Continue

$$
\mathrm{L}_{1}=\frac{\lambda_{1}}{I}=10^{-7}\left(2 \ln \frac{D}{r}+\frac{1}{2}\right) \quad \mathrm{H} / \mathrm{m}
$$

In case of non magnetic or hollow conductor

$$
\left.L_{t}=L_{1}+L_{2}=2 L_{1} \text { (Two identical conductors }\right)
$$

In Case of Magnetic Conductor

$L=1 \mathrm{O}^{-7}\left(\ln \frac{D}{r}+\frac{1}{2} \frac{\mu}{\mu_{\mathrm{o}}}\right)$
$\mu \quad$: permeability
$\mu_{r}:$ relative permeability
$X_{t}=2 \pi f L_{t} \quad \Omega$

$$
\lambda=10^{-7} I\left(2 \ln \frac{D}{r}+\frac{1}{2}\right)=2 * 10^{-7} I\left(\ln \frac{D}{r}+\frac{1}{4}\right)
$$

Continue

$\lambda=2 * 10^{-7} I \ln \frac{D}{r e^{-0.25}}$

Where:
$r e^{-.025}$: geometric mean radius (GMR) or self - geometric mean distance.

D : distance bet. Two conductors or mutual distance between two conductors

$$
\begin{array}{r}
\begin{array}{r}
\lambda_{a}=10^{-7}\left(\frac{I_{a}}{2} \frac{\mu}{\mu_{0}}+2 I_{a} \ln \frac{D_{a x}}{r}\right) \\
\begin{aligned}
\lambda_{\text {total }}=10^{-7}\left(\frac{I_{a}}{2} \frac{\mu}{\mu_{0}}\right. & +2 I_{a} \ln \frac{D_{a x}}{r} \\
& +2 I_{p} \ln \frac{D_{b x}}{D_{a b}} \\
& \left.+. .+2 \ln \ln \frac{D_{n x}}{D_{a n}}\right)
\end{aligned} \\
\begin{array}{r}
I_{a}+I_{b}+I_{c}+\ldots \ldots+I_{n}=0
\end{array} \\
I_{n}=-\left(I_{a}+I_{b}+I_{c}+\ldots \ldots . .+I_{n-1}\right)
\end{array}
\end{array}
$$

" Closed loop"

Continue

$$
\begin{aligned}
& \begin{aligned}
& \begin{aligned}
\mathrm{a}_{\mathrm{a}}=10^{-7}\left[\frac{\mathrm{I}_{\mathrm{a}}}{2} \frac{\mu}{\mu_{0}}\right. & +2 \mathrm{I}_{\mathrm{a}}\left(\ln \frac{\mathrm{D}_{\mathrm{ax}}}{\mathrm{r}}-\ln \frac{\mathrm{D}_{\mathrm{nx}}}{\mathrm{D}_{\mathrm{an}}}\right) \\
+ & 2 \mathrm{I}_{\mathrm{b}}\left(\ln \frac{\mathrm{D}_{\mathrm{bx}}}{\mathrm{D}_{\mathrm{ab}}}-\ln \frac{\mathrm{D}_{\mathrm{nx}}}{\mathrm{D}_{\mathrm{ab}}}\right)
\end{aligned} \\
&\left.+\ldots \ldots . .+2 \mathrm{I}_{\mathrm{n}-1}\left(\ln \frac{\mathrm{D}_{\mathrm{nx}}}{\mathrm{D}_{\mathrm{an}}}\right)\right]
\end{aligned}
\end{aligned}
$$

Continue

$$
\begin{aligned}
\lambda_{a}=10^{-7}\left[\frac{I_{a}}{2} \frac{\mu}{\mu_{0}}\right. & +2 I_{a}\left(\ln \frac{D_{a x}}{r} \cdot \frac{D_{a n}}{D_{n x}}\right) \\
& +2 I_{b}\left(\ln \left(\frac{D_{b x}}{D_{a b}} \cdot \frac{D_{a n}}{D_{n x}}\right)\right) \\
& \left.+\ldots+2 I_{n-1}\left(\ln \left(\frac{D_{n-1 x}}{D_{a n-1}} \cdot \frac{D_{a n}}{D_{n x}}\right)\right)\right]
\end{aligned}
$$

Continue

$$
\lambda_{a}=10^{-7}\left[\frac{I_{a}}{2} \frac{\mu}{\mu_{0}}+2 I_{a}\left(\ln \frac{D_{a x}}{r} \cdot \frac{D_{a n}}{D_{n x}}\right)\right)
$$

$$
\begin{aligned}
& +2 I_{b}\left(\ln \left(\frac{D_{b x}}{D_{a b}} \cdot \frac{D_{a n}}{D_{n x}}\right)\right) \\
& \left.+\ldots+2 I_{n-1}\left(\ln \left(\frac{D_{n-1 x}}{D_{a n-1}} \cdot \frac{D_{a n}}{D_{n x}}\right)\right)\right]
\end{aligned}
$$

Continue

When X approaches infinity,

$$
\begin{aligned}
& \frac{D_{a x}}{D_{n x}}=\frac{D_{b x}}{D_{n x}}=\ldots \ldots=\frac{D_{n-1}}{D_{n x}}=1 \\
& \begin{aligned}
\lambda_{a}=10^{-7}\left[\frac{I_{a}}{2} \frac{\mu}{\mu_{0}}\right. & +2 I_{a} \ln \frac{D_{a n}}{r} \\
& +2 I_{b} \ln \frac{D_{a n}}{D_{a b}} \\
& \left.+\ldots+2 I_{n-1} \ln \frac{D_{a n}}{D_{a n-1}}\right]
\end{aligned}
\end{aligned}
$$

Continue

Since, $-\ln A=\ln (A)^{-1}=\ln \frac{1}{A}$

$$
\begin{aligned}
\lambda_{a}=10^{-7}\left[\frac{I_{a}}{2} \frac{\mu}{\mu_{0}}\right. & +2 I_{a} \ln \frac{1}{r}+2 I_{b} \ln \frac{1}{D_{a b}} \\
& +\ldots+2 I_{n-1} \ln \frac{1}{D_{a n-1}} \\
& \left.+2 \ln D_{a n}\left(I_{a}+I_{b}+\ldots+I_{n-1}\right)\right]
\end{aligned}
$$

Continue

$$
\begin{aligned}
& \begin{array}{l}
\lambda_{a}=10^{-7}\left[\frac{I_{a}}{2} \frac{\mu}{\mu_{0}}+2 I_{a} \ln \frac{1}{r}+2 I_{b} \ln \frac{1}{D_{a b}}\right. \\
\\
\left.\quad+\ldots+2 I_{f} \ln \frac{1}{D_{a f}}+2 I_{n} \ln \frac{1}{D_{a n}}\right] \\
L_{a}=\frac{\lambda_{a}}{I_{a}} \quad \mathrm{~m} / \mathrm{H}
\end{array} \\
& \mathrm{X}_{\mathrm{La}}=2 \pi \mathrm{fLa} \quad \Omega
\end{aligned}
$$

General Expression for Inductance of Two Parallel Conductors of Irregular Cross-Section

Continue

The linkages about the small element I can be obtained by,

$$
\begin{aligned}
\lambda_{1}=2 * 1 \mathrm{O}^{-7} *\left(\frac{I}{n}\right)\left(\frac{1}{4}\right. & +\ln \frac{1}{\mathrm{r}_{1}}+\ln \frac{1}{\mathrm{D}_{12}} \\
& +\ln \frac{1}{\mathrm{D}_{13}}+\ldots \\
& +\ln \frac{1}{D_{1 \mathrm{n}}}-\ln \frac{1}{\mathrm{D}_{1 \mathrm{a}}} \\
& \left.-\ln \frac{1}{\mathrm{D}_{1 \mathrm{~B}}} \ldots-\ln \frac{1}{\mathrm{D}_{1 \mathrm{n}}}\right) \quad \text { Linkage } / m
\end{aligned}
$$

Similarly, $\lambda_{2}, \lambda_{3}, \ldots ., \lambda_{n}$ can be obtained
$\lambda_{\text {total }}=\lambda_{1}+\lambda_{2}+\lambda_{3}+\ldots \ldots+\lambda_{n}$

The linkages about the conductor are given by $\left(\lambda_{\text {total }}\right)$

$$
\begin{aligned}
& \lambda_{\text {total }}=\frac{2 * 10^{-7}}{n^{2}} I\left[\frac{1}{4}+\ln \frac{1}{r_{1}}+\ln \frac{1}{D_{12}}+\ldots+\ln \frac{1}{D_{1 n}}\right. \\
&+\frac{1}{4}+\ln \frac{1}{r_{2}}+\ln \frac{1}{D_{21}}+\ldots+\ln \frac{1}{D_{2 n}} \\
&+\frac{1}{4}+\ln \frac{1}{r_{n}}+\ln \frac{1}{D_{n 1}}+\ldots+\ln \frac{1}{D_{n n}} \\
&-\ln \frac{1}{D_{1 A}}-\ln \frac{1}{D_{1 B}}-\ldots-\ln \frac{1}{D_{1 n}} \\
&\left.-\ln \frac{1}{D_{2 A}}-\ln \frac{1}{D_{2 B}}-\ldots . \ln \frac{1}{D_{2 n}}\right] \\
& \text { October 16 } \quad
\end{aligned}
$$

Continue

since $\ln \frac{1}{D_{1}}-\ln \frac{1}{D_{2}}=\ln \frac{1 / D_{1}}{1 / D_{2}}=\ln \frac{D_{2}}{D_{1}}$
$\frac{1}{n^{2}} \ln X=\ln \sqrt[n^{2}]{X}$
$\lambda_{\text {toral }}=2 * 10^{-7} I\left[\frac{1}{4 n}+\ln \frac{\left.\sqrt[n^{2}]{D_{1 A} D_{1 B} \ldots \ldots \ldots . D_{1 n} D_{2 A} D_{2 B} \ldots \ldots \ldots . . D_{2 n}} \frac{n^{2}}{r_{1} D_{12} \ldots \ldots . . D_{1 n} r_{2} D_{21} \ldots \ldots . D_{2 n} \ldots . r_{n} D_{n 1} \ldots}\right]}{}\right.$

Continue

If n is taken as infinity, the term $\frac{1}{4 n}$ is negligible and approaches to zero, thus,

$$
\begin{aligned}
& \lambda=2 * 10^{-7} I \ln \frac{\sqrt[n^{2}]{D_{1 A} D_{1 B} \cdots \cdots \cdot D_{1 n} D_{2 A} D_{2 B} \cdots \cdot D_{2 n} \cdots .}}{\sqrt[n^{2}]{r_{1} D_{12} \cdots \cdot D_{1 n} r_{2} D_{21} \cdots \cdots \cdots \cdots . . D_{2 n} r_{n}}} \\
& \lambda=2 * 10^{-7} I \ln \frac{D_{m}}{D_{s}} \quad H / m
\end{aligned}
$$

$\boldsymbol{L}=\frac{\lambda}{\boldsymbol{I}}$

Definitions:

D_{m} : (Geometric mean distance) "GMD": is the distance between the one conductor in coil side and the other conductors in the other coil side.

Ds : (self - geo metric mean distance) "SGMD" or (Geometric mean radius)"GMR" is the distance between the one conductor in coil side and the other conductors in the same coil side

Inductance of Two Parallel Wires with Single-Phase Circuit

Using general expression

$$
\begin{aligned}
& D_{m}=D \\
& D_{s}=r e^{-0.25} \\
& L=L_{a}+L_{b}
\end{aligned}
$$

H/m
(For both conductors)

Inductance of Single-Phase Line with Multi-Conductors

using general expression

$$
L=2 * 10^{-7} \ln \frac{D_{m}}{D_{s}} \quad \mathrm{H} / \mathrm{m}
$$

For identical conductors, $\quad r_{a}=r_{b}=r_{x}=r_{y}=r$

$$
D_{m}=\sqrt[2 * 2]{D_{a x} \cdot D_{a y} \cdot D_{b x} \cdot D_{b y}}
$$

Where;

$$
D_{\mathrm{ay}}=\sqrt{\left(D_{\mathrm{ax}}\right)^{2}+\left(D_{\mathrm{xy}}\right)^{2}}
$$

Continue

$$
\begin{aligned}
& D_{s}=\sqrt[(2)^{2}]{r_{a} \cdot D_{a b} \cdot r_{b} \cdot D_{b a}}=\sqrt[4]{r_{a} D_{a b} r_{b} D_{b a}} \\
& r_{a}=r_{b}=r \quad D_{a b}=D_{b a} \\
& \text { Note }: r_{a}=r e^{-0.25}
\end{aligned} D_{s}=\sqrt{r D_{a b}} .
$$

If $D_{a b}=D_{x y}$, then D_{s} of the conductors on the left hand side as well as on the right hand side is equal.

With Our Best Wishes

Transmission and Distribution of Electrical Power Course Staff

