

Benha University Faculty of Engineering at Shoubra Electrical Engineering Dept.

Postgraduate (Pre-master) Course

Transmission and Distribution of Electrical Power

Dr./ Mohamed Ahmed Ebrahim

October 16

Contents

□ <u>Chapter 1:</u>

Transmission Line Constants

□ <u>Chapter 2:</u>

Transmission Line Models and Calculations

□ <u>Chapter 3:</u>

Mechanical Design of Overhead T.L

□ Chapter 4:

D.C. power Transmission Technology

Chapter 1: Transmission Line Constants

1. Main parts of over head T .L.

Ground

October 16

Types of conductors

- □ Hard –drawn copper conductors.
- □ Aluminum- core steel—rein forced (ACSR).
- □ For rural electrification , all aluminum conductors are used.
- □ Steel wires are used as earthing wires for over head T. L.

The main constants required are

- Resistance (R "ohm").
- Inductance (L "hennery") & corresponding X_L .
- \Box Capacitance (C "farad ") & corresponding X_c .

Dr: Mohamed Ahmed Ebrahim

Resistance of over head T.L.

$$\Box R = \rho L/A \qquad \Omega$$

□ Where :

R: resistance of T.L (Ω)

- ρ : resistivity of T.L conductor (Ω .m)
- L : length of T.L (m)

A : cross – section area (m^2)

- D For hard –drawn conductors : $\rho = 1.724 * 10^{-8}$ Ω.m at 20 °C
- □ For all aluminum conductors : $\rho = 2.860 * 10^{-8} \Omega$.m at 20 °C

October 16

Effect of Temperature on Resistance

- The resistance of T.L increases with Temperature
- $\hfill\square$ The rise in resistance depends on the Temperature coefficient of conductor material (α).

$$\frac{R_{t2}}{R_{t1}} = \frac{1/\alpha_0 + t_2}{1/\alpha_0 + t_1}$$

Where :

October 16

: Resistance of T.L at t₂ (Ω) R_{+2} R_{t1} : Resistance of T.L at t₁ (Ω) (1/°C) : Temperature coefficient at 0 °C α_0 (°C) T₁ : First temperature : Second temperature (°C) T_2 $\alpha_0 = 0.0041$ [°]/ C $\alpha_0 = 0.0038$ [°]/ C For hard – drawn copper For aluminum

Skin Effect on Conductors

when alternating current is passing through conductors, there is an unequal distribution of current in any cross – section of the conductor, the current density at the surface being higher than the current density at the center of the conductor. This causes larger power loss for a given r.m.s alternating current than the loss when the same value of DC is flowing in the conductor.

$$R_{ac} > R_{dc}$$

$$R_{ac} = \frac{A \text{ verage power losses}}{I^2_{\text{rms}}}$$
Skin effect ratio = $\frac{R_{ac}}{R_{dc}}$

Which depends on

- Permeability (Type of material).
- Area of cross section of the conductor.
- Frequency of the supply.

October 16

Inductance & Reactance of O.H.T.L

Inductance of overhead transmission line depends on:

- □ Size of conductor.
- Distance between conductors.
- Material of conductors.

Inductance & Reactance of O.H.T.L

$$H = \frac{I}{2\pi x}$$

H : electric field intensity.

A.turn/m

$$B = \frac{2*10^{-7}}{r^2} Ix$$

$$wb/m^2$$

October 16

Inductance of Two Conductor (Single Phase)

$$\lambda_{\text{total}} = \lambda_{\text{inside}} + \lambda_{\text{outside}}$$

$$\lambda_{\text{inside}} = \int_{0}^{r} \frac{2*10^{-7} xI}{r^{2}} * \frac{\pi x^{2}}{\pi r^{2}} dx$$

$$\lambda_{\text{inside}} = \int_{0}^{r} \frac{2*10^{-7} x^{3}}{r^{4}} dx = \frac{2*10^{-7} I}{r^{4}} \frac{1}{4} x^{4} \Big|_{0}^{r}$$

$$= \frac{2*10^{-7} I}{4r^{4}} * r^{4} = \frac{1}{2} * 10^{-7} I \qquad \text{linkages /m}$$

October 16

$$\lambda_{outside} = \int_{r}^{D} \frac{2*10^{-7} xI}{r^{2}} * \frac{\pi r^{2}}{\pi x^{2}} dx$$

$$= \int_{r}^{D} \frac{2*10^{-7I}}{X} dx = 2*10^{-7} I \ln \frac{D}{r}$$

$$\lambda_{outside} = 2*10^{-7} I \ln \frac{D}{r} \quad \text{linkages/m}$$

$$\lambda_{total} = \lambda_{inside} + \lambda_{outside}$$

$$= \frac{1}{2}*10^{-7} I + 2*10^{-7} I \ln \frac{D}{r}$$

Gr: Mohamed #hmed #hmed

Oc

$$L_1 = \frac{\lambda_1}{I} = 10^{-7} \left(2 \ln \frac{D}{r} + \frac{1}{2}\right)$$
 H/m

In case of non magnetic or hollow conductor

$L_t = L_1 + L_2 = 2L_1$ (Two identical conductors)

Dr: Mohamed Ahmed Ebrahim

In Case of Magnetic Conductor

$$L = 10^{-7} \left(\ln \frac{D}{r} + \frac{1}{2} \frac{\mu}{\mu_0} \right)$$

 μ : permeability

 $^{-7}$

 μ_r : relative permeability

$$X_t = 2\pi f L_t \qquad \Omega$$

$$\lambda = 10^{-7} I \left(2 \ln \frac{D}{r} + \frac{1}{2}\right) = 2 * 10^{-7} I \left(\ln \frac{D}{r} + \frac{1}{4}\right)$$

Dr : Mohamed Ahmed Ebrahim

$$\lambda = 2 * 10^{-7} I \ln \frac{D}{re^{-0.25}}$$

Where:

r e ^{-.025}: geometric mean radius (GMR) or self – geometric mean distance.

D : distance bet. Two conductorsor mutual distance between two conductors

Dr: Mohamed Ahmed Ebrahim

General Expression for Inductance of a Group of Parallel Wires

$$\begin{split} \lambda_{a} &= 10^{-7} \left(\frac{I_{a}}{2} \frac{\mu}{\mu_{0}} + 2I_{a} \ln \frac{D_{ax}}{r} \right) \\ \lambda_{total} &= 10^{-7} \left(\frac{I_{a}}{2} \frac{\mu}{\mu_{0}} + 2I_{a} \ln \frac{D_{ax}}{r} \right) \\ &+ 2I_{p} \ln \frac{D_{bx}}{D_{ab}} \\ &+ 2I_{p} \ln \frac{D_{nx}}{D_{ab}} \\ &I_{a} + I_{b} + I_{c} + \dots + I_{n} = 0 \end{split} \qquad \begin{array}{c} \mathbf{Y} \\ \mathbf{$$

$$\lambda_{a} = 10^{-7} \left[\frac{I_{a}}{2} \frac{\mu}{\mu_{0}} + 2I_{a} \left(\ln \frac{D_{ax}}{r} - \ln \frac{D_{nx}}{D_{an}} \right) + 2I_{b} \left(\ln \frac{D_{bx}}{D_{ab}} - \ln \frac{D_{nx}}{D_{ab}} \right) + \dots + 2I_{b} \left(\ln \frac{D_{bx}}{D_{ab}} - \ln \frac{D_{nx}}{D_{ab}} \right)$$
since, $\ln A - \ln B = \ln \frac{A}{B}$

Dr: Mohamed Ahmed Ebrahim

$$\begin{aligned} \lambda_{a} &= 10^{-7} \left[\frac{I_{a}}{2} \frac{\mu}{\mu} + 2I_{a} \left(\ln \frac{D_{ax}}{r} \cdot \frac{D_{an}}{D_{nx}} \right) \right) \\ &+ 2I_{b} \left(\ln \left(\frac{D_{bx}}{D_{ab}} \cdot \frac{D_{an}}{D_{nx}} \right) \right) \\ &+ \dots + 2I_{n-1} \left(\ln \left(\frac{D_{n-1x}}{D_{an-1}} \cdot \frac{D_{an}}{D_{nx}} \right) \right) \end{aligned}$$

Dr: Mohamed Ahmed Ebrahim

$$\begin{aligned} \lambda_{a} &= 10^{-7} \left[\frac{I_{a}}{2} \frac{\mu}{\mu} + 2I_{a} \left(\ln \frac{D_{ax}}{r} \cdot \frac{D_{an}}{D_{nx}} \right) \right) \\ &+ 2I_{b} \left(\ln \left(\frac{D_{bx}}{D_{ab}} \cdot \frac{D_{an}}{D_{nx}} \right) \right) \\ &+ \dots + 2I_{n-1} \left(\ln \left(\frac{D_{n-1x}}{D_{an-1}} \cdot \frac{D_{an}}{D_{nx}} \right) \right) \end{aligned}$$

Dr: Mohamed Ahmed Ebrahim

When X approaches infinity,

Dr: Mohamed Ahmed Ebrahim

Since,
$$-\ln A = \ln(A)^{-1} = \ln \frac{1}{A}$$

 $\lambda_a = 10^{-7} \left[\frac{I_a}{2} \frac{\mu}{\mu_0} + 2I_a \ln \frac{1}{r} + 2I_b \ln \frac{1}{D_{ab}} + \dots + 2I_{n-1} \ln \frac{1}{D_{an-1}} + 2\ln D_{an}(I_a + I_b + \dots + I_{n-1}) \right]$

Dr: Mohamed Ahmed Ebrahim

$$\begin{split} \lambda_{a} &= 10^{-7} [\frac{I_{a}}{2} \frac{\mu}{\mu_{0}} + 2I_{a} \ln \frac{1}{r} + 2I_{b} \ln \frac{1}{D_{ab}} \\ &+ \ldots + 2I_{f} \ln \frac{1}{D_{af}} + 2I_{n} \ln \frac{1}{D_{an}}] \\ L_{a} &= \frac{\lambda_{a}}{I_{a}} \quad \text{m/H} \end{split}$$

 $X_{La} = 2\pi f La \qquad \Omega$

Dr: Mohamed Ahmed Ebrahim

General Expression for Inductance of Two Parallel Conductors of Irregular Cross-Section

October 16

The linkages about the small element I can be obtained by,

$$\begin{split} \lambda_{1} &= 2*10^{-7}*(\frac{1}{n})(\frac{1}{4} + \ln\frac{1}{r_{1}} + \ln\frac{1}{D_{12}} \\ &+ \ln\frac{1}{D_{13}} + \dots \\ &+ \ln\frac{1}{D_{13}} - \ln\frac{1}{D_{1a}} \\ &- \ln\frac{1}{D_{1B}} \dots - \ln\frac{1}{D_{1a}} \\ &- \ln\frac{1}{D_{1B}} \dots - \ln\frac{1}{D_{1n}}) \quad \text{Linkage/m} \\ \text{Similarly, } \lambda_{2}, \lambda_{3}, \dots, \lambda_{n} \text{ can be obtained} \\ \lambda_{total} &= \lambda_{1} + \lambda_{2} + \lambda_{3} + \dots + \lambda_{n} \end{split}$$

October 16

The linkages about the conductor are given by (λ_{total})

$$\begin{split} \lambda_{total} &= \frac{2*10^{-7}}{n^2} I[\frac{1}{4} + \ln\frac{1}{r_1} + \ln\frac{1}{D_{12}} + \ldots + \ln\frac{1}{D_{1n}} \\ &\quad + \frac{1}{4} + \ln\frac{1}{r_2} + \ln\frac{1}{D_{21}} + \ldots + \ln\frac{1}{D_{2n}} \\ &\quad + \frac{1}{4} + \ln\frac{1}{r_n} + \ln\frac{1}{D_{n1}} + \ldots + \ln\frac{1}{D_{nn}} \\ &\quad - \ln\frac{1}{D_{1A}} - \ln\frac{1}{D_{1B}} - \ldots - \ln\frac{1}{D_{1n}} \\ &\quad - \ln\frac{1}{D_{2A}} - \ln\frac{1}{D_{2B}} - \ldots - \ln\frac{1}{D_{2n}}] \end{split}$$

Dr: Mohamed Ahmed Ebrahim

since
$$\ln \frac{1}{D_1} - \ln \frac{1}{D_2} = \ln \frac{1/D_1}{1/D_2} = \ln \frac{D_2}{D_1}$$

 $\frac{1}{n^2} \ln X = \ln \sqrt[n^2]{X}$

$$\lambda_{total} = 2*10^{-7} I \left[\frac{1}{4n} + \ln \frac{\sqrt[n^2]{D_{1A}D_{1B}...D_{1n}D_{2A}D_{2B}...D_{2n}}}{\sqrt[n^2]{r_1D_{12}...D_{1n}r_2D_{21}...D_{2n}...r_nD_{n1}...}}\right]$$

Dr: Mohamed Ahmed Ebrahim

If n is taken as infinity, the term $\frac{1}{4n}$ is negligible and approaches to zero, thus,

$$\lambda = 2 * 10^{-7} I \ln \frac{\sqrt[n^2]{D_{1A} D_{1B} \dots D_{1n} D_{2A} D_{2B} \dots D_{2n} \dots D_{2n} \dots D_{2n} \dots D_{2n} \dots D_{2n} \dots D_{2n} n}{\sqrt[n^2]{r_1 D_{12} \dots D_{1n} r_2 D_{21} \dots \dots D_{2n} r_n}}$$

$$\lambda = 2 * 10^{-7} I \ln \frac{D_m}{D_s} \quad \text{H/m}$$

October 16

 $L = \frac{\lambda}{I}$

Definitions:

- D_m : (Geometric mean distance) "GMD": is the distance between the one conductor in coil side and the other conductors in the other coil side.
- Ds : (self geo metric mean distance) "SGMD" or (Geometric mean radius)"GMR" is the distance between the one conductor in coil side and the other conductors in the same coil side

Dr: Mohamed Ahmed Ebrahim

Inductance of Two Parallel Wires with Single-Phase Circuit

Dr : Mohamed Ahmed Ebrahim

Inductance of Single-Phase Line with Multi-Conductors

using general expression

$$L = 2 * 10^{-7} \ln \frac{D_m}{D_s}$$
 H/m

For identical conductors, $r_a = r_b = r_x = r_y = r$

$$D_m = \sqrt[2^{*2}]{D_{ax}.D_{ay}.D_{bx}.D_{by}}$$

Where;

$$D_{\rm ay} = \sqrt{(D_{\rm ax})^2 + (D_{\rm xy})^2}$$

October 16

$$D_{s} = \sqrt[(2)^{2}]{r_{a}.D_{ab}.r_{b}.D_{ba}} = \sqrt[4]{r_{a}D_{ab}r_{b}D_{ba}}$$
$$r_{a} = r_{b} = r \qquad D_{ab} = D_{ba}$$
$$Note: r_{a} = re^{-0.25} \qquad D_{s} = \sqrt{rD_{ab}}$$

If $D_{ab}=D_{xy}$, then D_s of the conductors on the left hand side as well as on the right hand side is equal.

Dr: Mohamed Ahmed Ebrahim

With Our Best Wishes Transmission and Distribution of Electrical Power Course Staff

Dr: Mohamed Ahmed Ebrahim